Relationships among Differential , Truncated Differential and Impossible Differential Cryptanalyses against Word-Oriented Block Ciphers like Rijndael

Outline

- Proposal of an efficient algorithm to estimate all the truncated differential probabilities of the word-oriented block ciphers
 - where randomly chosen differentials are given.
- Evaluation of Rijndael
 - Truncated differential probabilities of single layer MixColmun
 - Impossible truncated differentials for multiple round Rijndael

Our Method

 Does the same thing with a small computational cost.

Outline of our algorithm

- Write down the linear layer in a matrix form.
- Make a constraint matrix.
- Calculate the rank of the matrix.
- Exclude overlapped combinations.

Matrix Form

$$d y_{1} \leftarrow 0...0$$

$$d y_{2} \leftarrow d y_{2} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 3 \end{pmatrix} d c_{1}$$

$$d y_{2} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 3 \end{pmatrix} d c_{2}$$

$$d y_{3} \leftarrow d c_{3}$$

Constraint 1

 Both input and output differentials must satisfy the following equation.

$$\begin{array}{c} d \ y_1 \\ d \ y_2 \\ d \ y_3 \end{array} = \left(\begin{array}{c} 1 \ 1 \ 0 \\ 0 \ 1 \ 3 \\ 0 \ 0 \ 3 \end{array} \right) \left(\begin{array}{c} d \ c_1 \\ d \ c_2 \\ d \ c_3 \end{array} \right) \\ \rightarrow \quad 0 = \left(\begin{array}{c} 1 \ 1 \ 0 \ -1 \ 0 \ 0 \\ 0 \ 1 \ 3 \ 0 \ -1 \ 0 \\ 0 \ 0 \ 3 \ 0 \ 0 \ -1 \end{array} \right) \left(\begin{array}{c} d \ c_1 \\ d \ c_2 \\ d \ c_3 \\ d \ y_1 \\ d \ y_2 \\ d \ y_3 \end{array} \right)$$

Constraint 2

- Consider the following truncated differentials.
- Both $d c_1$ and $d y_2$ must be 0.

Constraint Matrix

$$\begin{pmatrix}
1 & 1 & 0 & -1 & 0 & 0 \\
0 & 1 & 3 & 0 & -1 & 0 \\
0 & 0 & 3 & 0 & 0 & -1
\end{pmatrix}$$

$$\begin{vmatrix}
0 & 1 & 1 & 0 & -1 & 0 & 0 \\
0 & 1 & 3 & 0 & -1 & 0 \\
0 & 0 & 3 & 0 & 0 & -1 \\
0 & 0 & 0 & 3 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{pmatrix}$$

$$\begin{vmatrix}
d & c_1 \\
d & c_2 \\
d & c_3 \\
d & y_1 \\
d & y_2 \\
d & y_3
\end{vmatrix}$$

Rank

 Find the combinations satisfying the following constraints.

Rank=5 Dimension=6

6 dimensions

-5 dimensional constraints=1 free dimension

M=2 word size x 1 combinations

- M includes the cases that some of the some 0.
- Excluding these cases, N is obtained.

Truncated Differential prob. for multiple layers Single layer $d a_{2} \qquad d a_{n} \qquad (0,1,...,0,1)$ $= 1_{x}, 2_{x}, 3_{x}, ... \qquad (0,0,...,0,1) \qquad (0,0,...,0,1) \qquad (0,0,...,0,1) \qquad (0,0,...,0,1) \qquad (0,0,...,0,1) \qquad (1,1,...,1,1)$

Impossible Truncated Differential for multiple layers

- Assumptions is not required
- Since the probability 0 remains 0 even if the assumption is false.

(0,1,...,0,1) (0,0,...,0,1) ... (1,1,...,1,1) Impossible (0,0,...,0,1) ... (1,1,...,1,1)

Multiple layers

Evaluation of Rijndael

- Truncated differential probability for
 - Single MixColmn
- Impossible truncated differentials for
 - Multiple round Rijndael

Truncated Differential Probabilities for Single-layer 4-byte MixColmn

 Truncated differential prob. of 16-bytes is given by a direct product of these prob.

HW(b ₀₀ ,b ₁₀ ,b ₂₀ ,b ₃₀)	HW(c ₀₀ ,c ₁₀ ,c ₂₀ ,c ₃₀)	Prob.
1	1,2,3	0
1	4	1
2	1,2	0
2	3	р
2	4	251p

P= 1/(2⁸-1)

Truncated Differential Probabilities for Single-layer 4-byte MixColmn

$HW(b_{00}, b_{10}, b_{20}, b_{30})$	$HW(c_{00}, c_{10}, c_{20}, c_{30})$	Prob.
3	1	0
3	2	p²
3	3	251p ²
3	4	251p+10p ²
4	1	p ³
4	2	251p ³
4	3	251p ² + 10p ³
4	4	$251p+9p^2+235p^3$

 $P=1/(2^8-1)$

Impossible Truncated Differentials

- Does not exist after 3 rounds when randomly chosen differences are given.
 - (3-round Rijndael is vulnerable by the impossible truncated differential attack.)

Rounds	Impossible Paths
2 (1 linear layer)	65534
3	14910
4	0

Conclusion

- We proposed an efficient algorithm for estimating all the truncated differentials of the word-oriented block ciphers
 - Where randomly chosen differentials are given.
- We evaluated
 - Truncated differentia probabilities for single layer MixColmn
 - Impossible truncated differentials for multiple round Rijndael

Further Work

- Evaluation of truncated diff. prob. after biased (nonuniform) differentials are given.
- Considering the validity of the assumptions we used for multiple layers.
 - Next layer's input differentials are uniformity
 distributed and independent.

